a.png  029-65616388 15309255931

a.png 中文  b.png English

必一sport网页版登录

产品分类

必一sport网页版登录

名 称:b体育官网_B—sports必一网页版登录

电 话:029-65616388

传   真:029-89281463

联系人:康经理

手 机:15309255931

               15353517803

网 址:m.bjcqzc.com

邮 箱:info@bjcqzc.com 

         sale必一sport网页版登录@bjcqzc.com 

地 址:西安市高新技术产业开发区科技六路中段23号



ASTRONVA数据采集器

您的当前位置: 首页 > 产品中心 > ASTRONVA数据采集器

b体育官网.电力变压器工作原理及保护

  • 所属分类:ASTRONVA数据采集器

  • 点击次数:14
  • 发布日期:2024-04-02 05:27:43
  • 来源:必一sport网页版登录
  • 作者:B—sports必一
  • 在线询价
  • 详细介绍

  变压器是根据电磁感应原理制成的一种静止电器,用于把低电压变成高电压或把高电压变成低电压,是交流电输配系统中的重要电气设备。当变压器合闸时,可能产生很大的电流,本文主要论述该电流的产生和影响。

  当合上断路器给变压器充电时,有时可以看到变压器电流表的指针摆得很大,然后很快返回到正常的空载电流值,这个冲击电流通常称之为励磁涌流,特点如下:

  1)涌流含有数值很大的高次谐波分量(主要是二次和三次谐波),因此,励磁涌流的变化曲线)励磁涌流的衰减常数与铁芯的饱和程度有关,饱和越深,电抗越小,衰减越快。因此,在开始瞬间衰减很快,以后逐渐减慢,经0.5~1s后其值不超过(0.25~0.5)In。

  3)一般情况下,变压器容量越大,衰减的持续时间越长,但总的趋势是涌流的衰减速度往往比短路电流衰减慢一些。

  4)励磁涌流的数值很大,最大可达额定电流的8~10倍。当整定一台断路器控制一台变压器时,其速断可按变压器励磁电流来整定。

  在交流电路中,磁通Φ总是落后电压u90°相位角。如果在合闸瞬间,电压正好达到最大值时,则磁通的瞬间值正好为零,即在铁芯里一开始就建立了稳态磁通,如图1所示。在这种情况下,变压器不会产生励磁涌流。

  电力变压器是电网的重要组成元件之一,在电网的安全稳定运行中具有极其重要的作用。由于电网中变压器数量越来越多,其单体价值又非常高,一旦发生故障将造成严重后果,所以对变压器保护动作的可靠性有更高的要求。近年来,110KV变压器保护正确动作率一直徘徊在70%~80%之间(1999年66.99%, 2000年75.12%,2001年82.54%,2002年74.77%),远低于线路保护的正确动作率,因此迫切需要对变压器保护进一步发展与完善。【1】【2】

  变压器的运行故障主要有两类:(1)油箱内部故障-包括各相绕组之间的相间短路、单相绕组部分线匝之间的匝间短路、单相绕组或引出线通过外壳发生的单相接地故障、铁心烧损等;(2)油箱外部故障-包括引出线的相间短路、绝缘套管闪络或破碎引起的单相接地(通过外壳)短路等。变压器故障会导致不正常工作状态,主要表现在:外部短路或过负荷产生过电流、油箱漏油造成油面降低、中性点过电压、因外加电压过高或频率降低引起过励磁等。

  根据变压器的故障状态,应装设下述保护:(1)瓦斯保护-防止变压器油箱内各种短路故障和油面降低,其中重瓦斯跳闸、轻瓦斯发信号;(2)纵联差动保护和电流速断保护-防止变压器绕组和引出线多相短路、大接地电流系统侧绕组和引出线的单相接地短路及绕组匝间短路;(3)相间短路的后备保护,包括过电流保护、复合电压起动的过电流保护、负序过电流保护-防止变压器外部相间短路并作为瓦斯保护和差动保护的后备;(4)零序电流保护-防止大接地电流系统中变压器外部接地短路;(5)过负荷保护-防止变压器对称过负荷;(6)过励磁保护-防止变压器过励磁。【4】

  当变压器空载投入和外部故障切除后电压恢复时,因铁心饱和及存在剩磁会出现很大的励磁电流即励磁涌流,其特点是含有很大成分的非周期分量、含有大量的高次谐波分量且以二次谐波为主、波形之间有间断,其大小和衰减时间与外加电压、铁芯剩磁大小与方向、回路阻抗、变压器容量和铁芯性质有关。对于三相交流变压器,由于三相之间相差1200,所以任何瞬间合闸至少有两相出现不同的励磁涌流,它对变压器差动保护的正确动作有不利影响,而在稳态运行及差动范围外发生故障时则影响不大。

  差动保护是用某种通信通道将电气设备两端的保护装置纵向联接起来,并将两端电气量比较来判断保护是否动作,其基础是基尔霍夫定律。根据该定律,保护范围内流入与流出的电流应该相等(变压器归算到同侧)。当保护范围内发生故障时,其流入与流出的电流不等,差动保护就根据这个不平衡电流动作。差动保护原理简单易于实现,有很高的动作选择性和灵敏度,以其优越的保护性能成为大容量、高电压变压器的主保护,缺点是在励磁涌流情况下容易误动。

  从电路上看,变压器一次绕组和二次绕组并非是一个节点,变压器差动保护原理建立在稳态磁路平衡的基础上,是差动保护原理的一种拓展。在暂态过程中这种平衡关系将被打破,只有等到暂态过程衰减后,原先的平衡关系才能重新建立,因此需要检测这种暂态。变压器差动保护中的关键问题是如何处理励磁涌流导致的误动,目前常用的涌流闭锁方法有二次谐波制动、间断角闭锁、波形对称原理等。励磁涌流是一次系统在稳态和衰减直流分量叠加磁链的激励下,作用于非线性励磁特性的电流输出。衰减的直流分量在频域中是用傅立叶分析的一个连续的密度谱,而稳态交流分量在频域上是用傅立叶级数分析的一个离散幅值谱。在保护的数字信号处理中,将衰减的直流分量在时间上截断并进行了周期延拓,导致产生成了离散的幅度谱,混叠到了原来的幅度谱中,影响了二次谐波分量的大小,给二次谐波制动原理的差动保护带来了困难。

  从理论上讲,变压器在正常运行和区外故障时,应该有Ij=I1- I2=0。然而,由于变压器在结构和运行上的特点,实际运行中很多因素使Ij= Ibp≠0,(Ibp为不平衡电流),即当保护范围内无故障时也存在不平衡电流,这些不平衡电流有可能引起保护误动。对不平衡电流产生的原因及消除方法分析如下。

  我国规定的五种变压器标准联结组中,35kV Y/D-11双绕组变压器常被使用。这种联结方式的变压器两侧电流相差300,要使差动保护不误动就要设法调整CT二次回路的接线和变比以进行相位校正,使电源侧和负荷侧的CT二次电流相差1800且大小相等,这样就能消除Y/D-11变压器接线对差动保护的影响。方式依此类推。

  由于各侧的CT变比都是标准的,如:600/5、800/5、1000/5、1200/5等,变压器的变比也是一定的,很难完全满足 或 的要求,即Ij≠0,产生Ibp,此时差动回路就有不平衡电流流过使保护可能误动。通常利用差动继电器的平衡线圈进行磁补偿来消除或减小这个差值,即用平衡线圈弥补实际变比与理想值之差,使两臂电流差接近零,从而消除或尽量减小不平衡电流。

  因各侧CT型号不同,其结构形式、饱和特性、励磁电流(归算到同侧)、传变特性等也就不同。因此正常运行情况下差动回路中产生在两臂的不平衡电流较大:Ibp.CT =Ktx?Ker?Id.max/ nl1(其中Ktx =1),会影响保护正确动作。在外部故障因某一侧CT饱和而产生大量的不平衡电流时,也有可能影响变压器差动保护的正确动作。所以应采用CT同型系数为1的互感器以满足10%误差曲线的要求,并在整定计算中予以考虑。

  带负荷调整分接头是电网中采用有载调压变压器来调整电压的方法。改变分接头就是改变变压器的变比nB,破坏了nl2/ nl1= nB的关系,对于已调整好的差动保护将产生较大的不平衡电流(CT二次侧不允许开路,即nl2, nl1不能改变),Ibp. ΔU=±ΔU? Id.max/ nl1 。由于有载调压是带负荷连续调节,而差动保护不能带电调整,所以在整定计算时必须考虑这个因素。

  (1)非周期分量的影响:此时不平衡电流要比稳态大,且含有很大的非周期分量,持续时间比较长(几十周波),其最大值出现在短路后几个周波,Ibp.CT=Kfzq?Ker?Ktx?Id.max/ nl1 。需采用快速饱和中间变流器来抑制非周期分量。

  (2)由ILy产生的不平衡电流:当变压器电压突然增加(如空载合闸、区外短路切除后),引起IL升高产生励磁涌流,数值可达(6-8) Ie,其特点是有很大的直流分量(80%基波)、有很大的谐波分量、尤以二次谐波为主(20%基波)、且波形间出现间断(削去负波后)。需采用具有速饱和铁芯的差动继电器,以及应用二次谐波制动、间断角原理、或波形对称原理的差动保护。

  变压器差动保护是变压器的主保护,要求有很高的可靠性,而变压器结构复杂,独具特点,所以必须严格按规程要求认真分析各个细节,了解变压器差动保护的特点,采用相应措施,杜绝事故发生,保证保护可靠动作。除装置本身的因素外,其安装接线整定校验维护等环节都与正确动作有关。

  为进一步提高变压器保护动作的可靠性,除如前一部分所述要尽量消除或降低稳态暂态不平衡电流外,还要采取措施,主要包括:

  (1)采用先进的多CPU容错技术进行保护的设计开发以保证装置本身工作的可靠性,可大大降低由于硬件问题引起误动的概率。多CPU同时处理一组数据且信息共享,能及时检测、纠正因硬件故障可能引起的误动和拒动,一个CPU有故障正常的CPU仍可工作。

  (2)优化硬件电路的设计,输入输出电路采取隔离、滤波、削峰、过压过流保护等措施,提高抗干扰能力,降低功耗。根据统计,保护装置本身最易出故障的部分是接口电路和电源,所以这部分要采取特别设计。

  (4)条件具备时配置双套保护。双套保护有两种配置方案,一种是完全双重化,即两套保护设置独立的信号通道,使用独立的直流电源和CT二次回路,但主保护和后备保护可共用一个保护CT,其缺点是停柜维修困难、模拟量数字量信号和跳闸接点过多、工程布线难。另一种是部分双重化,即将关系到设备安全的重要保护双重化,其缺点是后备保护配置复杂、容易造成误动。

  (5)注意差动保护二次电流回路的接地方式。差动保护二次电流回路接地时,各侧CT的二次电流回路必须通过一点接于地网,因为变电站的接地网之间并非绝对等电位,在不同点之间有一定的电位差。当发生短路故障时,有较大的电流流入地网,各点之间的电位差较大。如果差动保护二次电流回路接在地网的不同点,它们之间的电位差产生的电流将流入保护装置,会影响差动保护装置动作的准确性甚至使之误动。所以各侧CT的二次电流回路应并联后接到保护装置的差动电流回路中,所有电流回路在并联的公共点接地。

  (6)在CT接入系统容量变化或新装保护投入运行时,不可忽略根据差动保护区内短路故障时穿越变压器的最大短路电流和实测的差动回路二次负荷,校核保护用CT的10%误差曲线是否满足要求,确保CT在10%误差范围内。否则在故障时差动保护可能拒动、误动。

  (7)注意合理整定各定值。实际运行中时有因定值不合理发生保护误动的现象。需要注意的是,有的运行部门通过提高启动电流来提高差动保护的可靠性,但这却降低了内部轻微故障的灵敏度。实际上,差动保护的启动电流、拐点电流、斜率对灵敏度都有相互的制约关系。

  (8)采用新的保护原理。如标积制动原理有很高的灵敏度,但它对相位特性特别敏感,容易误动,如果采取特殊的抗CT饱和措施,即可消除这个缺点,从而提高保护动作的可靠性。【7】

  基于电压/电流相似性的差动保护可通过在特定时间段内比较变压器电源端电压和差动电流波形的相似性来区分变压器内部故障和励磁涌流,能在很短时间内动作(20ms)且不受CT饱和影响。【8】

  基于人工智能的差动保护是借助模糊逻辑算法计算磁通差动电流微分曲线、谐波约束条件以及比率差动特性曲线,然后对计算结果进行分析判别励磁涌流何内部故障,这种保护速度快,能在3/4周期内作出反应,可适用于各种类型的变压器。【10】【11】

  基于小波变换的差动保护应用小波分析提取涌流和故障电流的特征,具有很高的辨析度。结合神经网络对变换结果进行诊断分析将进一步提高保护的准确性和可靠性。【13】

  根据以上考虑而设计开发基于高性能CPU的微机变压器成套保护,经过静模、动模试验及实际现场运行证明,能够有效提高变压器保护的可靠性,其配置及主要功能如下。

  (1) 保护配置:变压器本体保护装置具有十路非电量重动和动作指。

必一sport网页版登录
热推产品  |   主营区域: 陕西 甘肃 西安 北京 上海 广州 深圳 成都 长沙 武汉
  • 在线客服
  • 联系电话
    15309255931
  • 在线留言
  • 手机网站
  • 在线咨询